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Ab.stracf-The impedance of the generalized strip transmission

line is computed by variational methods. The use of an upper bound
‘(?’)=( )

v,; + g(y) ((~(y) – U(Y – ~))

and lower bound approximation yields an average impedance as well
as a known mazimum error. The one-dielectric microstrip line is + V,(u(y – A) – ?l(y – A – T))
treated as a limiting case. Losses are considered. Results include

those problems which have been solved elsewhere by conformal
mapping techniques as special cases.

(
+ v, ~+ f(y)) (U(y – ~ – T) – U(Y – 1)) (3)

INTRODUCTION

T

HE CHARACTERISTIC impedance of the strip

transmission line has been discussed by many

authors. The design of transmission line com-

ponents, investigation of mechanical tolerances and

other applications require the solution of the generalized

strip transmission line, i.e., the impedance of a line

formed by a conductor placed parallel to, but at arbi-

trary distances from the two ground planes must be

available. The microstrip transmission line would be in-

cluded as a limiting case in this type of configuration,

An extension of a known variational technique [1] is

chosen as a tool for the desired mathematical model.

TRANSVERSE PLANE CAPACITANCE

An upper bound on the capacitance may be obtained where

where U(a) is the step function defined by

The assumption that g(y) and ~(y) are zero is used for

the first-order approximation. This implies that only

C. has a nonzero value. Since the stationary value of the

integral is a minimum, it follows that the value of the

capacitance calculated with these approximations will

always be larger than the exact value. This upper bound

is found to be:

by considering the stationary property of the energy

integral. Thus,

(1)

The integral is stationary with respect to first-order

variations in ~, where r#I is the solution of Laplace’s

equation for the boundary conditions and geometry

given in Fig. 2. The total energy stored in the regions is

given by:

‘V”= -x:+:)vo’+:z’’(an’sinh?
n~W

+ b%’ sinh )1---j--+2cn’e-n”w . (2)

The coefficients may be evaluated in terms of the po-

tential @(lV/2, y). It is possible to express this quantity

as
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+ 4 $j ~ (s(mrA) + (–1)”+’5’(WTB))
.=1 Yr’rr 1

(4)

S(a) = k sin a.
0!

It is possible to calculate a lower bound on the capaci-

tance by making use of the Green’s function approach.

The center conductor is removed and replaced by an

ec[uivalent surface charge p. The potential is then given

by

$
@(z, y) = G(x, y j X’, y’)~(~’, y’)dl’ (5)

8’

where SZ is the surface of the center conductor, and G

is the solution of

~,2G(x, y I X’, y’) = – : 8(x – X’)8(Y – y’)
‘$1

G(*, O I x’, y’) = O

G(x, 1 I x’, y’) = O.

The capacitance is:

H
G(L y I x’, Y’)P(Z’Y’)I)(X,Y)dd’

1 S.2 s~
—.
c

[L’’(XY)’Z12

— . (6)
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t A relationship between a and a’ may be obtained by
bp-w7d

+
t u , ‘,$PO

requiring that the surface charge density is a constant

when A = B. Thus:

a

I
qside qlength ~’

—=a=—

Fig. 1. Generalized rectangular transmission line.
‘=2T 2W ‘7

Hence

[$ ’’’’l’= ’a’[T+:(’++)I:’ ‘8)

Since a will appear in the numerator and denominator
i#lj of an expression similar to that given by (6), it will

y.~ I

:=W,2 +=0
cancel from the final expression. The rather lengthy

~.~ integration of (6) is straight forward and will not be

Fig. 2. Boundary values and definition of coordinates. given here. The final result is given by:

'=z[:[~+;(l~1-:.3ll[s(""A)+(-1)n+1s('`T(1-`4-T))]

[ (
. (S(mri’) + (– l)”+ ’S(mr(l – .4 – T))) ; – ;, (1 – c-””w)~

+Asin(””(’+$))sin(%) (’-’-n”w)l++ ~T+q,+A . y

2 l–A–T

“[sin(’zT(A+3)sin (?)l[
(S(mrz4) + (– l) ’+ ’~(mr(l – A – T)))(I – C-’”w)

‘+sin(’z”(A+3)sin (a+’-n=wd

1

It may be shown that this integral is stationary with TEM MODE TRANSMISSION LINES

respect to first-order changes in the functional P(X, y).

The function G is the Green’s function for the situation

described by Fig. 1. It may be shown to be:

The surface density is of course unknown. If it is as-

sumed that p, has some reasonable form, a value of C,

say c=, may be computed. Since the stationary value of

the integral is a minimum, it follows that CL< C&ct.

Thus, the assumption that p is a constant on all con-

ductor surfaces and inversely proportional to the ground

plane spacing leads to the following:

f

w n’
pdl = 2aT + 0/

()
g+j- .

s%

For a homogeneous cross section the characters, tic

impedance of the corresponding transmission line m ay

be expressed as

and since

simplification of (4) and (9) yields:
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—
~/d~R

ZOL =

w
;+ + 4 ~ ~ [s(mrA) + (– I)n+’s(m-(l – A – T))]’

l–A–T ~=1 rz7r

zo”=:[T+;(l:l_;_T)]3[ ((S(mrJ) + (– l)”+-lS(mr(l – A – T)))’ ~ – ;t (1 – C-””w)
)

‘+(sin(’2T(A+~)) sin(%))(’+’-nT’”

‘&(sin(’’”(A ‘:))s’”(?))
(S(mrA) + (– 1) ’+ ’S(mr(l – A – T)))(I – c-”””) 1 (12)

where

The complexity of Z,” is due to the charge distribu-

tion assumption. A somewhat simpler expression may

be obtained by assuming the distribution to be a con-

stant. This approximation is discussed in a later section.

An average impedance is defined by (13).

2?0= +(z,~ + Zoq. (13)

Figures 3 and 4 represent the impedance surfaces for two

different conductor thicknesses and a range of ground

plane spacings as well as conductor widths. Since the

line geometry is quite flexible, it is possible to obtain

the TENT impedance of the microstrip transmission line

as a limiting case. Furthermore, the loading effect of

the top ground plane may be studied. Thus, if

Zo(a,, b,, f,, w,) ~ Z,(a,, nbi, L, ~,)

the corresponding transform in the normalized coordi-

nate system is:

ZO(.4 ,, T;, WJ j Z,(kA,, kTi, k~izz)

where

1
k=

n+ (1 – ?2)(A, + Ti) “

This transformation was used to obtain the data given

in Fig. 5. It is seen that the line impedance for this

geometry goes from 21.3 ohms to 33.5 ohms for the

transition from symmetrical strip line to microstrip.

The change is roughly 50 per cent. Furthermore, if the

ground planes are separated in a ratio of 10 to 1 or

greater, the loading effect of the upper ground plane

disappears and the line may be considered as a micro-

strip line. The increase in impedance is, of course, a

function of the center conductor width. Increases of 85

per cent were observed for very wide lines (W= 60).

Smaller lines (w= 1.2) showed increases of the order

of 25 per cent.

The data displayed in Fig. 6 was obtained by the

forementioned process, It agrees very well with evalua-

hlcly

(11)

tions made for T = O by Bowman [3] and Black and

IHiggins [2].

Loss EVALUATION

It has been shown that the attenuation constant for

the series losses in a transmission line (a,) is approxi-

mately given by [4], [5]:

R,d; 1 (3Zo()~c._.— nepers/unit length
2q Zo 6}2

(14)

where

R.= surface resistivity (ohm/square)

8Z0 = incremental increase in characteristic imped-

ance due to a uniform incremental decrease in

dimension &z of all conductors normal to their

surface.

The equation is a reasonable approximation for fre-

quencies which are high enough to cause fully developed

skin effect for a given conductor thickness. It is shown

that in the unnormalized coordinate system, (15) ap-

plies

8Z0

--(

C7zo dz, 13zo

)
=2xi–z– —. (15)

au dt

The expression may be transformed to yield a similar

answer in the normalized system used here. In order to

do this some care must be taken with the term dZJW.

A limit process was found to be helpful. lt was found

that :

(3.”+ [%2%23
(16a)

where the three expressions pertain to the center con-

ductor, the lower ground plane, and the upper ground

plane, respectively. If all conductors involve the same

material, it is found that:
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2qcyed

[
~ (1–.4)~– (l+ T); –(l+w)#]. (17)

= Zo

Equation (17) has been evaluated for a variety of cases.

Some of these are given in Fig. 7.
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Fig. 3. Impedance surface for T= 0 and CR= 1.
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CONCLUSIONS

Since an upper and lower bound are calculated, the

maximum possible error due to the approximations is

always known. However, it was found that this error

is overly pessimistic. Thus, the data given in Figs. 8 and

9 [4] indicates very good agreement with special cases

solved by conformal mapping techniques. Further im-

provements can be obtained by changing the approxi-

mations for the lower bound, This has already been done

for the upper bound. A solution based on the assump-

tion that the surface charge is a constant was found to

be too rough [6].

The method is very flexible. A single equation is used

to solve a variety of problems, most of which have not

been solved by transform methods. The inclusion of the

moveable ground plane allows the evaluation of micro-

strip parameters in terms of the closed transmission line.

Stuclies based on displacements, such as mechanical

tolerances or losses, as indicated here, may be accom-

220
plished. It is, of course, true that the solutions are very

\
‘\ \ ~80 complex. However, the higher order functions resulting
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Fig. 8. Evaluation of the mathematical model by
comparison to [4].
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Fig. 9. Loss comparison with [4].

frorr; transformations hav;to be expanded in series form

for purposes of evaluation anyway. Thus, as long as

computer evaluation is used, little difference exists be-

tween the Iabor involved in the evaluation of the solu-

tions and the greater utility of this type of approach

which seems to justify the added complication.

ACKNOWLEDGMENT

The writer is indebted to J. R. Burns for his labors

in connection with programming. The council offered

by Dr. C. P. Wang and Dr. I. Palocz, as well as earlier

encouragement offered by Prof. T. A. Murrell, Digital

Computer Laboratory, University of Illinois, is grate-

fully acknowledged.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

Collin, R. E., Field Theory of Guided Waves. McGraw-Hill: New
York, 1960, pp 148-164.
Ellack, K. G., and T. J. Higgins, Rigorous determination of the
parameters of microstrip transmission lines, IRE Trans. on
Microwave Theory and Techniques, vol MTT-3, Mar 1955, pp
93–113.
E;owman, F., Notes on two-dimensional electric field problems,
17YOC.Lend. Math. SOC:, vol 39, 1935, pp 205-215.
Cohn, S. B., J. K. Shlmizu, P. M. Sherek, and E. M. T. Jones,
Strip transmission lines and components, Final Rept SRI Project
1114, Signal Corp Engrg. Labs., Ft. Monmouth, N. J., Feb 1951,
pp 5–19.
S!ee also: Cohn, S. B., Shielded coupled-strip transmission line,
IRE Trans. on Microwave Theory and Techniques, vol MTT-3,
oct 1955, pp 29-38.
Wheeler, H. A., Formulas for the skin effect, Pfoc. IRE, vol 30,
Sep 1942, pp 412-424.
Guckel, H., Characteristic impedances of generalized strip-trans-
mission lines, Rept 157, Digital Computer Lab., University of
Illinois, Urbana, Dec 1963.


